MARKOV PROCESSES
ON A LOCALLY COMPACT SPACE

BY
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ABSTRACT

Given a positive contraction, P, on C(X) we define the conservative and
dissipative parts of P and establish some properties which are analogous to
known ones from measure theory (see [3]). We also prove a ratio limit theorem
for certain processes.

1. Definitions and notations. Let X be a locally compact, o-compact and
perfectly normal space. Let P be an operator on C(X) such that:

(i) P is positive, i.e., if f = 0 then Pf 20

(i) P is a contraction. ie., | P £ 1.

(iii) The adjoint operator P*, that acts on the space of the regular charges,
preserves the space of the regular measures, i.e., if A is a measure on X then P*}
is also a measure.

Such an operator defines a Markov transition probability on (X,X) where I
is the Borel o-field, in the following form:

a.n P(x,4) = (P*6,)(4)
where J, is the Dirac measure at x. It is clear that P(x, - ) is a measure for all x.
On the other hand, if f is a continuous function then (P*§,,f> = Pf(x) is also
continuous, and the collection % = {f I feB(X,Z); (P*S,,f> e B(X,Z)} is equal
to #(X,X), the space of the bounded and X-measurable functions, because A
contains all the continuous functions and is closed under monotonic limits.
Hence, if f is measurable then Pf(x) = (P*é,, f) is also measurable. In parti-
cular, for every Ae X, P(-,A) is a measurable function. Hence, P(x,A4) defined
in (1.1) is indeed a Markov transition probability.

* This paper is a part of the author’s Ph.D. thesis prepared at the Hebrew University of
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his helpful advice and kind encouragement.
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Let a(x) be a function, we shall define the operator:

(1.2) If(x) = a(x) - f(x)
Particularly if a(x) = 1,(x), AeX we shall denote:

(1.3) I(z = IA

2. The conservative and the dissipative parts of the process.

DerinNiTION 2.1, A function f is said to be lower semi-continuous (l.s.c.) if
there exists an increasing sequence of continuous functions {f,} so that f, » f.

(2.1) If f,,f, are ls.c. then min(f,f,) is Ls.c.

(2.2) If {f,} are Ls.c. then limmax(fy,---,f,) is Ls.c.

n—» o

(2.3) If Aisan opensetthen 1 4isl.d.c. If fisLs.c. then {f > a}isopenand {f < a}
is closed.

(24) If f is Ls.c. then Pf is ls.c.

function fe B(X,X) will be called sub-variant if Pf < f.
The following lemma is Lemma 6 of [5]. We shall give here the proof for com-
pleteness.

LeEmMMA 2.1. Let A€X, there exists a function iy which is minimal with
respect to the condition 1, i, <1 and P,, £ iy. The function i, can be

represented as follows:
e o]

(2.5 iy = X (I4P)'1, (where A° = X — A).
n=0

If A is open then i, is Ls.c,

Proof. Sce [3] Chapter III, formulas (3.1) and (3.2). If A is an open set then
the function 1, is Ls.c. Denote gy = X ¥_o(I,cP)"1,. If gy is Ls.c. then also
gyes = 2ndo (Pl =1,+1,Pgy = max(l,,Pgy) is lsc. But gyti,,
hence i, is L.s.c.

Pi (x) is the probability that x enters A at least once. The sequence P"i,
is decreasing, hence the limit lim,_ ., P", exists. lim P" ,(x) is the probability
that x enters A infinitely many times.

DEFINITION 2.2. A set A4 is said to be inessential if lim, ,  P"i (x) = O for all x.
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The union of all open and inessential sets is said to be the dissipative part of the
process and will be denoted by D.

Clearly D is an open set, and since X is perfectly normal and o-compact, there
exists a sequence of open and inessential sets {D,} so that

(2.6) p= /b,

@
n=1
DerINITION 2.3 The conservative part of the process C is
2.7 C=X-D
ReMARK. It is not difficult to see that the definition of D is equivalent to the

definition of Win [5] formula (7).

THEOREM 2.1. There exists a decomposition of D.

(2.8) D=|JE,UN
n=1

[v )
where E, are open sets and X P"lE”e@(X,E) and N is a set of first category.
k=1

Proof. Let us consider the decomposition D=U:°=1D,. of formula (2.6)
Define: E,; = {x|P"iDn(x) < 1}. E,;is closed. We have | )2, E,; = X. Denote
E,; = int E,;. The set E,; — E,; is nowhere dense, and the set N, = | J2((E,;—E,)
s of the first category.

D, = D (E.jnD,)N(N,UD,.
Thus a
ip,— Plip, 2 415,05
Hence:

k k
Py, p, S4 X Py — Plip) £ 4
1 k

k= =1

denote N = U,‘,"’=1(N,l N D,) this is a set of first category. But

b-

n=1n

Cs

(Enj nDn) v N ’
1

]

so the theorem is proved.

In the rest of this section we shall assume that D = (Fie. X = C.

REMARK. An intersection between an open set 4 and a closed set Bis either no-
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where dense or contains an open set, because if E « 4 N B is open then EN A
is not empty and ENA < ANB.

THEOREM 2.2. Let A be any open set; then i, takes only the values 0 or 1
except on a set of first category. The same is true for P i, for each n.

Proof. Let us denote N, = {Pi,>1/n, P, £ 1—1/n}. If the set N, is
not nowhere dense then there exists an open set B < N,,, because N, is an inter-
section of the open set {Pi, >1/n} and the closed set {P", < 1—1/n}. By
Proposition 10 of [1] B is an inessential set because inf, ,pPi (x)>0 and
SUp, , plimy. o Priy(x) £ 1 — 1/n < 1 which contradicts the assumption D = .
Hence P"i, takes only the values O or 1 for each n, except on the set of first cate-
gory N = [ J2,N,. Let us denote M, = {Pi, = 0, iy > 1/n}. If the set M,
is nowhere dense, then thereis an open set @ # B < M,,, because M, is an inter-
section of the open set {i, > 1/n} and the closed set {Pi, < 0}. We have
n(iy — Pi,) = 1. Define f = min(1, n £2, P(i, — Pi,)). This function satis-
fies 1; £ f < 1. By Lemma 2.1 iz < f. Hence

[e]
lim P/, < lim Pf <lim n £ P**(i,-P,)=0
jooo jo oo jowo k=0

which contradicts the assumption D = @f. Hence Pi(x) = Oimplies i (x) =0
except on the set of first category M = Uj,"LlM,,. It is clear that Piy(x) =1
mplies i,(x) = 1, hence i, takes only fthe values O or 1 except on the set of first
category M U N, and this completes the proof of the theorem.

THEOREM 2.3. Let A be any open set. Then
=]
(2.10) T PL(x) = {5
n=0

We shall first prove the following lemma:

LeMMA 2.2. Let xeX and AeX then X5, P(x,A) =0 if and only if
PiA(x) - 0.
Proof. (a) If X ,2,P%x,4) = 0 then by (2.5) we have:

Pi(x) = EP(IAP)"IA(x) < s Pi(x,4) =0
n=0 n=1

(b) If Piy(x) = O then by Lemma 2.1, we have
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P'(x,4) £ P'iyf(x) < Pif(x) =0
hence X .2, P%x,A) = 0.

Proof. of Theorem 2.3 (a) By Lemma 22 we have iy(x) =0 = X2,
Pl (x) =0,

(b) By Theorem 2.2 lim,_, ., P*i (x) takes only the values O or 1 except on
a set of first category, but:

lim §P“+"1A(x) > lim gP"(IAcP)"lA(x) = 1.

k=0 n=0 k=0 n=0

v el
Hence, lim,_ ,, Pi (x) = 1= X P",(x) = . So, (2.10) is proved.
n=0

COROLLARY. Let f =0 be a ls.c. function then
w0
(2.11) z PY(x) = {%
n=1
except on a set of first category.

Proof. Denote B,; = {P*f=1/j}, k =0,---,j = 1,2, j- P,f = 15,. By
Theorem 2.3 there exists a set of first category E,; < B,; such that

[ea) n
xEBkj—Ek,, = ZP'llBkj(x) = 0 =
n=1

gpnf(x) = .

n

Let B =|Ji;Bi;» E = (Ji;E;- E is a set of first category and

xéEB—E = ;‘, Pf(x) =

n=1
x¢B = 5 PYf(x) = 0.
n=1

THEOREM 2.4. Let f = O be a Ls.c. function, then
(2.12) PfSf=Pf=Ff

except on a set of first category.

Proof. Let a, < b, be two positive rational numbers. If the set N, = {f > b,,
Pf < a,} is not nowhere dense, then there exists an open set B < N,, because
N, is an intersection of the open set {f > b,} and the closed set {Pf < a,}, hence:
f—Ff 2 (b, — a)lp, thus: (b,—a,) LF.,P1, = I, PNf - Pf) =

Pf—P*'f < Pf. Or T, P*;< oo which contradicts Theorem 2.5. Hence
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N, is a nowhere dense set. Let {(a,,b,)} be the sequence of all couples of rational

numbers such that b, > a,. The set N =U,,=1 N, is of first category and for
each x¢ N we have Pf(x) = f(x), which proves the theorem.

COROLLARY. Let f =20 be a continuous function then Pf < f = Pf = f. In
particular P1 = 1.

Proof. Theorem 2.6 implies that Pf = f on a dense set. But f and Pf are
continuous functions, hence Pf = f everywhere.

The following example shows that Theorems 2.3 and 2.4 are not true unless
we assume the existence of an exceptional set of first category. This example is
an improvement of an example given by Prof. S. R. Foguel.

ExamMPLe. Put X =[0,1), let ¢ be the map of X into itself defined by
é(x) = {3x} (3x minus the integral part of 3x). One can describe X to be the
unit circle and the transformation sends z to z3 (Iz} = 1), and then ¢ is a con-
tinuous map.

Let us define Pf(x) = f(¢(x)). There exists a measure invariant under P that
does not vanish on any open set (the Lebesgue measure) and thus
221 P, = oo ae. for every open set A. Theorem 2.3 implies that the process

is conservative. If we put x=a,a,a4; - (x=2% %ff, a; = 0,1,2) then ¢(x) = aas---

Let B be the Cantor set: those x’s such that a,1, i=1,2,3,--- ¢~"(B) > B for
each n,and A = | J7_,0-"(B) — B contains every fraction x = a,a,a;+- where
the digit 1 appears only finitely many times. The set A4 is of first category but
it has the same cardinality as the continuum and it is dense in X . B is an open
set but {0 < X2, Plge< o0} =4, and Plg < 1p but Pl % 15 and

lim, o, P15 = 15, 41e-

THEOREM 2.5. Let f = 0 be a Ls.c. subvariant function. Let B = {f > a} then
there exist an open set B such that B> B, P1; < 1, and B — B is a set of first
Category.

Proof. Let us take a sequence {a,} such that a,\ a, and consider the sets
B, = {f > a,}, we have B, < B. Define the functions g, = 1/a,min.(f,a,), we
have g, = 1; and Pg, < g,,hence by Lemma 2.1 iy < g,.Butx¢B - g(x) <1

for all n. Thus, by Theorem 2.2, there exists a set N, c B€ of first category so

that x¢ BUN, = iz (x) = 0. We have B,,, > B, and Lemma 2.1 implies ig_,,
> ip . Similarly, ip, < ip, hence lim,.,ip, £ ip. On the other hand, for each
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xeB, ip(x) =1 for sufficiently large n, iz (x) = 1, hence lim,,ig(x) =
g(x) = 14(x) and it is clear that Pg £ g. Thus by Lemma 2.1 we have g = iz,
hence lim,_, ., ip = ip. Denote N = U ~1N,. N is a set of first category and
x¢ BUN = ig(x) = 0 for all n = ig(x) = 0. Let B be the set B = {iz> 0},
B < Band B— B = N. Define the functions h, = n-min(iz, 1/n). We have
Ph, < h, and lim,_, h, = 15. Hence Plz < 15. which completes the proof of
Theorem 2.7.

3. Ratio limit theorems. In this section we shall assume

AssuMPTION 3.1. For all x and for every open set A we have

G Pifx) = 1
Lemma 3.1. Let A be any open set. Then
o0
32) 2 Pl,(x) = «©
n=1
Sfor all x.
Proof.

lim 2 P"¥ (x) = lim >: P(I . P)"1 (x) = 11m Phi(x) = 1.

k- n=0 k=0 n=0
Thus
@
2 Pl (x) = oo.
Let 0 £ B £ 1 be a function with a compact support E and the interior of the
set {f# = 1} is non-empty. Let « = 1 — f; define:

Py = I E)P(Iap)"lﬂ'
In particular, if f =1,
[s0]
(3.4) PA"_—IA ZP(IAcP)"]A-

n=0

From Lemma 3 of [4] we can conclude that P, is a contraction on %(E,Xg).
The operator adjoint to P acts on the measures. It will also be denoted by P
but will be written to the right of its variable. Thus

(3.5) W) = Ly = [ PL
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Equation (3.4) will occasionally be for o-finite positive measures. A measure is
Said to be invariant if

(3.6) uP =

In [4] it is proved that condition (3.1) implies that there exists a o-finite invariant
measure which is finite on compact sets and positive on open sets.

LemMmA 3.2. (a) Let u be a finite positive measure on E invariant under P
then

3.7 A= I uPL)y
a=0

is a o-finite measure invariant under P, and Al; = p
(b) Let A be a measure invariant under P and A(E) < oo then Ml is invariant

under Py.

Proof. (a) See [4]. Further,
o] o0
A'Iﬁ = A.PIﬁ= Eﬂ(PI‘I)"PIﬂ=ﬂIE E(Pla)"PIﬂ=ﬂPﬂ=ﬂ.
=0 =0
(b) Assume AP = A, hence

Al Z (PIa)"PI,, =2 Z(Pla)"PI,, -2, E(PI,,)"PI,, =

zc>

= A X (PL)'PI;— API, Z(PI Y'PI, = API, — A(PI,)"*'PI,.

n=0 n=0
But from Lemma 3 of [4] we can conclude that
MPLYY'PIL, . - 0.
Thus
o
n=0

LEMMA 3.3. Let f 20 be a function subinvariant under P; then Igf is a
subinvariant under Py and Pyl f < I Pf.

Proof. Let f =0 be a subinvariant under P. Hence

Ig ZP(I Py, f = IE ZP(I Pyf—1Ig Z P(I Pyl f

n=0

=1l Z P(IPYf—Ig Z P(LPYIPf=IzP(ILP)""'f SI;PfIpf.
n=0

n=0



Vol. 7, 1969 MARKOV PROCESSES 319

Let N tend to oo, hence PIpf < I Pf < Igf.
Let A be a g-finite invariant measure. (X, Z, 4, P) may be considered as a Markov
process on the measure space (X,%,1). (For the definition of such a process

see [3]).
Lemma 3.4. The process (X,Z,A,P) is conservative.

Proof. If the dissipative part of the process is non-empty then there exists
a subinvariant function f = 0 such that Pf 5% f. Let us take an open set 4 such
that A1(4) < oo, and hence P,1, = 1,, and I,Pf s I,f. Consider the process
(4,%,,ml ,P,); by [3] Chapter 1T it is a well defined Markov process. By Lemma
3.2 we have P f S I,Pf<I,f= P,f#1,f. Hence the dissipative part
of the process (4,%,,4,P,) is non-empty, by Theorem A of [3] Chapter III.
On the other hand, A, is a finite measure invariant under P,, thus P, is a con-
servative operator, a contradiction. Thus the process (X, X, 1, P) is conservative.

AssuMpTION 3.2. There exists a unique invariant o-finite measure i, such
that is finite on compact sets.

DerniTION 3.1, A function f is said to be almost continuous if there exists
an increasing sequence of continuous functions {f,} and a decreasing sequence
of continuous functions {f,} such-that lim,., »f, = f<fand lim,.  f, = f=7,

and A({f>fH =0

THeOREM 3.1. Let f, g be two positive and almost continuous functions with
compact supports. Let u be any finite measure. Then:

e
¥

“N

X <Ly, P Gy
. limns=t = =2x2-7
(3 8) ;inoo N1 <2'> g>

=21 (u, Prg)

We shall first prove the following lemma:

LemMA 3.5. Let 0 £ B <1 be a function with a compact support E and
the interior of the set {B = 1} is non-empty, then for each N and each xe X,
and every bounded function, 0 < f we have

(3.9) 2 PLES() T P+ 1]

Proof. For each K we have
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N K N K
3 Pl T P(ILPYIf(x) = T P X PP I,f(x)—
n=1 =0 n=1 k=0
N
- z P, ZP(I PYI,f(x) = ( T prtt 2(1 PYI,f(x) —
k=0 =
N K N K
- TP TP, f(x)) - ( S P TP -
N K K
- X Pt TP f(x)) P S (LPY L f(x)— P Z(I P) Ipf(x)+
n=1 k=0 k=0

2

+ 2 Pf(x) — ZP"(I PY L f(x) < EP"I,, f(x) + P¥*1 5_:(1 PYL,f(x) <

N
< _2 PIf(x) + | f} - P 2(1 PYI1(x) =
N K
= ZPLf(x)+ I7] P E(IaP)"l(x)—P”“ Z (LPYLPI(x)) =
=1 k=0 k=0
N
= _2 PIf(x) + | £ - (P 1(x) = PY*HILPY (X)) <
N
= § P f()+ | f]-
Hence

N X N
X P, SPULPILI() S P () +| 1]
n=1 k=0 n=1
Tet K tend to oo, we get
N N
PP () S TP+ | /]

Proof of theorem 3.1. ILet A4 be a compact set that contains the supports of
the function fand g. Let 0 < f £ 1 be a continuous function with a compact
support E and 4 < {f = 1}. There exists a sequence of integers {N;} such that
the sequence

N;
=21 {u, Pfy

Ny
=21 {us PRy

converges. In order to prove the theorem it is sufficient to show that
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Py
I§ n=1 — N/
o, T By
§1 {u, PR By

and to show also by a similar way that

N

) ; {u,P*g) A gd

bm et —— = B
2 G Pp)

Let us define a functional on B(E,X;):

Ny
Z <#’Pnlﬂh>
(3.10) v(h) = Limyj »=t  \ (a Banach limit), he B(E,Xp).

J N,
DRIR XY

By Lemma 3.1 we have X2, (u,P"8> = oo, hence Lemma 3.5 implies v(Pgh)
L v(h).Butv(lg) = 1.Let 0 £ h < 15 then

v(Py(lg — ) = v(1y — Pyh) = 1= w(Pyh) = 1~ v(h) = v(1,—~h).

Thus v(Pgh) = v(h), and v is invariant under Py. v is also defined as a functional
on C(E), but by Assumption 3.2 and Lemma 3.2 we have that there exists a
unique functional on C(E) which is invariant under P;. This functional is the
functional which is induced by the measure 1I;. Hence

he C(E) = v(h) = é'Zﬁlig _ (é,[;?)j

is an almost continuous function. Let {f,} and {f,} be the sequences of Defini-
tion 3.1. We have:

hnf>  Clnf> o GLLD
B - L - Mg T im ) v =)

n— o0

Clpf> _ Glfy _ o phd

OBy T p Cm g im v/ 2 ().

n—- o
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N
. ) ? L, Py O
1.€. ljl—l;nw "_;1—.— = —<T’-ﬁ—>- .

El {u, P )

CoroOLLARY 1. Let f, g, be as in Theorem 3.1. Let u be the Dirac measure 5,
then we have

N
ZEPG Gy

RN

(3.11) -
> Pg(x)
n=1

COROLLARY 2. Let A,B be condtionally compact sets, such that W(A4) >0
A(B) >0 and X(0A) = M0B) = 0 (the boundaries); then 1, and 1, are almost
continuous functions. Let y be any finite measure. Then

N
Z uP'(B) B
(3.12) lim »=t = ,1((—,4;

N-® N

> uP(4)
n=1

COROLLARY 3. Let A,B be as in Corollary 2. Let p be the Dirac measure J,
then

N
2 P'(x,B)
(3.13) lim n=1 = i—%.

n-o N
Y PY(x,A)
n=1
DerNITION 3.2, The process is said to be a Harris process if
(3.14) MA)>0=ix)=1 for all xeX.
The following lemma is well known, we shall give its proof for completeness.

LeMMA 3.6. If the process is a Harris process then Assumption 3.2 is valid.

Proof. Let p be any invariant measure. It can be decomposed into u = u; + u,
where p; <A and u, 1 A. Let:

0 = A(A) = AP(4) = <A,PL) = A{P1,>0}) = 0 =

> p({PLy>0}) = 0= {u;,Ply) =y, P(4) = 0> pu P <A,
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Consider the process (X,X,4,P), (3.14) implies that the process is ergodic and
by Chapter VI of [3] Theorem A, there can exist at most one o-finite invariant
measure for the process (X, X, A, P). Hence yy = a-A. We shall prove that y, =0,
There exists a set 4 such that A(4) > 0 but u,(4) = 0. Denote 4, = {P"1, > 0}.
We have for each n: 0 = puy(4) = u,P(4) = (, P'LY = po( -1 4) = 0. But
by Lemma 2.2 and (3.14) we have | Ji-; 4, = X. Thus p, = 0.4

The following example will show that Harris’ condition (3.14) is not necessary

for assumption 3.2 to hold.

Example. Let X = R' the real line, A the Lebesgue measure, u a probability
measure which support is not contained in a discrete subgroup of R!, but the
support of x is a countable set and hence A L u. Let us also assume [xu(dx) = 0.
Define Pf(x) = [f(x—y)u(dy). By [2] Chapter VI, 10, if A4 is an open set then
every xe R' enters A some time with probability 1, i.e. Pi (x) = 1. Hence as-
sumption 3.1 is satisfied. But this process is not a Harris process. Consider the

@« n
measure i = 2 il let F be its support. It is obvious that F is a countable
n=0

set. Hence A(F) = 0. Let F, = F + x then A(F,) = 0. But P"(x,F,) = 1 for al.
nor gy = 0,ie., (3.14) is not satisfied.

On the other hand Assumption 3.2 holds. It is clear that AP = A; we shall prove
thatif vis a g-finite invariant measure which is finite on compact sets thatv = - 1.

Let A be an open bounded interval:
W(4) = vP(A) = (v, PL) = f f 1% — y)u(dy)(dx) =
- f f 1% — yy(dxu(dy) = f WA + y) u(dy).

Define: f(x) = v(4 — x), it is easy to see that f(x) is a continuous function,
and we have Pf = f. Define fy = min(f, N); in order to prove that f is constant
it is sufficient to prove that fy is constant for each N. But Pfy < fy and by the
Corollary to Theorem 2.6 we have Pfy = fy. If fy is not a constant then there
exists a < b such that B = {fy > b} and E = {fy < a} are non-empty open sets,
and BN E = . But by Theorem 2.5 there exists an open set B such that B< B
and B — B is a set of first category, and hence BNE = ¢¥, such that P13 < 13.
Thus, x€ E = P*(x,B) = 0 for all n, which contradicts Assumption 3.1. Hence
fis a constant, i.e. v(4 — x) = v(A) for every open interval A. Thus v is the Haar
measurement on R!, ie. v=a-4.
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