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ABSTRACT 

Given a positive contraction, P, on C(X) we define the conservative and 
dissipative parts of P and establish some properties which are analogous to 
known ones from measure theory (see [3]). We also prove a ratio limit theorem 
for certain processes. 

1. Definitions and notations. Let X be a locally compact,  a-compact  and 

perfectly normal  space. Let P be an operator on C(X) such that:  

(i) P is positive, i.e., if  f > 0 then P f  > 0 

(it) P is a contraction, i.e., I1 P II 1. 

(iii) The adjoint operator P* ,  that acts on the space of  the regular charges, 

preserves the space of  the regular measures, i.e., if 2 is a measure on X then P*2 

is also a measure. 

Such an operator defines a Markov transition probabili ty on (X, Z) where Z 

is the Borel a-field, in the following form: 

(1.1) P(x ,A)  = (P*,~x)(A) 

where ~x is the Dirac measure at x .  It  is clear that P(x, • ) is a measure for all x .  

On the other hand, i f f  is a continuous function then (P*c~x,f) = P f ( x )  is also 

continuous, and the collection 9.[ = { f i f e  ~3(X, Z); (P*eSx,f) e ~ ( X ,  Z)} is equal 

to ~ ( X , Z ) ,  the space of the bounded and Z-measurable functions, because A 

contains all the continuous functions and is closed under monotonic limits. 

Hence, i f f  is measurable then P f ( x )  = (P*Sx, f )  is also measurable. In parti- 

cular, for every A e Z,  P("  ,A) is a measurable function. Hence, P(x,A)  defined 

in (1.1) is indeed a Markov transition probability. 

• This paper is a part of the author's Ph.D. thesis prepared at the Hebrew University of 
Jerusalem under the supervision of Professor S.R. Foguel. The author wishes to thank him for 
his helpful advice and kind encouragement. 
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Let e(x) be a function, we shall define the operator: 

(1.2) I j ( x )  = c~(x) " f ( x )  

Particularly if c~(x)= 1A(X), A e E  we shall denote: 

(1.3) I~ = 1.4 

Israel J. Math., 

2. The conservative and the dissipative parts of the process. 

DEFINITION 2.1. A func t ionf  is said to be lower semi-continuous (1.s.c.) if 

there exists an increasing sequence of continuous functions {f,} so that f ,  ~ f .  

(2.1) I f f l , f  2 are 1.s.c. then min(f l , f2  ) is 1.s.c. 

(2.2) If  {fn} are 1.s.c. then l immax( f l , . . . , f , )  is 1.s.c. 
n - - *  oO 

(2.3) If A is an open set then 1.4 is 1.d.c. I f f i s  l.s.c, then { f  > a} is open and { f  < a } 

is closed. 

(2.4) If  f is l.s.c, then P f  is 1.s.c. 

function f e  B (X ,  E) will be called sub-variant if P f  < f .  

The following lemma is Lemma 6 of [5]. We shall give here the proof for com- 

pleteness. 

LEMMA 2.1. Let  A e E ,  there exists  a func t ion  i n which is m i n i m a l  with 

respect to the condit ion 1 n < i n < 1 and Pin < in. The  func t ion  i n can be 

represented as fol lows:  

oo 

(2.5) i n = ~ (Inop)nln (where A c = X - A ) .  
n = O  

I f  A is open then i n is l.s.c. 

Proof. See [3] Chapter III, formulas (3.1) and (3.2). If  A is an open set then 
,̂ 

the function in is 1.s.c. Denote gN = ~ n=o(I.4cp)nl.4. If  gN is 1.S.C. then also 

~,N+I (i.4op),la 1 n + I a P g  N = max(1.4,PgN) is 1.s.c. But gN ~' i.4, gN+l  = Z . - n = 0  = 

hence i n is 1.s.c. 

Pin(x  ) is the probability that x enters A at least once. The sequence P~i.4 

is decreasing, hence the limit lim,_,~ P~in exists, l imP"in(x)  is the probability 

that x enters A infinitely many times. 

DEFINITION 2.2. A set A is said to be inessential iflimn_,ocP~i.4(x) = 0 for all x. 
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The union of all open and inessential sets is said to be the dissipative part of the 

process and will be denoted by D. 

Clearly D is an open set, and since X is perfectly normal and a-compact, there 

exists a sequence of  open and inessential sets {D,} so that 

(2.6) D = 0 D, 

DEFINITION 2.3 The conservative part of  the process C is 

(2.7) C = X - D 

REMARK. It is not difficult to see that the definition of D is equivalent to the 

definition of W in [5] formula (7). 

THEOREM 2.1. There exists a decomposition of D. 

(2.8) D = O E ,  kJN 

where E, are open sets and ,~ Pkl~ e ~ ( X , Z )  and N is a set of first category. 
k = l  

= ~o D Proof. Let us consider the decomposition D [,.J,=l , of  formula (2.6) 

Define: ff--anj ~" {X I P Jio.(X ) <= ½}. ff'nj iS closed. We have U;=, /~ ,J  = X.  Denote 

E.i  = int/~.j. The set/~,j - E.j is nowhere dense, and the set N. = ~.Ji~ l ( E , i -  E,j) 

s of the first category. 

D,, = 0 (E.jN D,,) ~(Nn t.) P,,). 
j = l  

Thus 

Hence: 

denote 

io, -- pJiD, >= ¼1~,j~D 

k k 

PklB.joo. <=4 E Pk(iD. -- Piio. ) <= 4j 
k = l  k = l  

oo N N = U . = i ( . ¢ ~ D . )  this is a set of first category. But 

D =  0 U ( E . j N D ~ ) k d N ,  
n = l  n = l  

so the theorem is proved. 

In the rest of this section we shall assume that D = ~Z( i.e. X = C. 

REMARK. An intersection between an open set A and a closed set B is either no- 
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where dense or contains an open set, because if E c . 4  r3 B is open then E r3 A 

is not empty and E t'3 A c A (3 B. 

THEOREM 2.2. Let A be any open set; then i A takes only the values 0 or 1 

except on a set of  first category. The  same is true for  P" i A for  each n. 

Proof. Let us denote N , =  { P i A > Z / n ,  P ' i  A <= 1 - - 1 / n } .  If  the set N,  is 

not nowhere dense then there exists an open set B ~ N, ,  because N,  is an inter- 

section of the open set {Pi A > 1In} and the closed set {P"ia <= 1 - l / n ) .  By 

Proposition 10 of  [1] B is an inessential set because inf~ ~BPiA(x)> 0 and 

supx ~slimk_~ooP~ia(x) < 1 -- 1/n < 1 which contradicts the assumption D = ~ .  

Hence P"i A takes only the values 0 or 1 for each n, except on the set of  first cate- 

gory N = ( , .J ,~IN, .  Let us denote M, = {Pi A = O, ia > 1/n}.  If  the set M, 

is nowhere dense, then there is an open set ~ # B c M, ,  because M, is an inter- 

section of  the open set {ia > 1/n} and the closed set {Pi a <= 0}. We have 

n(ia - Pia) > lB. Define f = min(1, n ]Ek°°=opk(i a -- PiA)).  This function satis- 

fies 1B __<f =< 1. By Lemma 2.2 i B < f .  Hence 

oo 

lim p l  <__ lira P~C<__lim n Z P k + i ( i A - - P ~ A ) = O  
j ~ o o  j--* oO j--* co k = O  

which contradicts the assumption D = ~ .  Hence PiA(X) = 0 implies ia(x ) = 0 

except on the set of  first category M = (,J~= 1 M , .  It is clear that PiA(x) = 1 

replies ia(x ) ---- 1, hence i A takes only Ithe values 0 or 1 except on the set of  first 

category M t3 N,  and this completes the proof of the theorem. 

THEOREM 2.3. Let  A be any  open set. Then  

oo 

(2.10) Z e"h(x)  = {o 
n = O  

We shall first prove the following lemma: 

LEMMA 2.2. Let  x ~ X  and A ~ Z  then ~°~=~P'(x ,A)  = 0 i f  and only i f  

PiA(x ) = O. 

Proof. (a) If  ] ~ = I P " ( x , A )  = 0 then by (2.5) we have: 

Pix(x  ) = P(IAP)"la(x)  < ~, P" (x ,A)  = 0 
n = O  n = l  

(b) If  Pia(x) = 0 then by Lemma 2.1, we have 
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Pn(x,A) < PniA(x ) < PiA(x ) = 0 

hence ~ ~= 1 Pn( x, A) = O. 

315 

Proof. of  Theorem 2.3 (a) By Lemma 2.2 we have ia (x )= 0 :~ ~ o  

PnlA(x ) = 0. 

(b) By Theorem 2.2 limk.ooPkia(x) takes only the values 0 or 1 except on 

a set of  first category, but: 

O9 oo 

lim ~ Pn+kla(x ) > lim ~ Pk(Ia~P)nlA(X ) = 1. 
k ~ o o  n=O k ~ c o  n = O  

oo 

Hence, limk_.copkia(x) = 1 =~ ~ P~IA(x ) = ~ .  SO, (2.10) is proved. 
n = 0  

COROLLARY. Let f > 0 be a 1.s.c. function then 

co 

(2.11) ~, P~f(x) = {o 
n = l  

except on a set of first category. 

Proof. Denote Bkj = {pkf > l / j} ,  k = O,... ,j  = 1,2 . . . .  j "  Pkf  > 1B~j. By 

Theorem 2.3 there exists a set of first category Ekj ~ Bkj such that 

co n oo 

X~Bk j - -Ek ,  =~ ~ P"IB~j(X) = 0O => ~ Pnf(x) = Go. 
n = l  / r =  1 

Let B = Uk,jBki, E = Uk,jEkj.  E is a set of first category and 

co 

x e B - E  ~ ~,P~f(x)  = co 
n = l  

xCU :~ ~ P~f(x) = O. 
n = l  

THEOREM 2.4. Let f > 0 be a 1.s.c. function, then 

(2.12) p f  < f ~ p f  = f 

except on a set of first category. 

Proof. Let an < bn be two positive rational numbers. If the set Nn = {f  > bn, 

P f  < an} is not nowhere dense, then there exists an open set B ~ Nn, because 

Nn is an intersection of the open set { f  > bn) and the closed set {P f  < an}, hence: 

f - - P f  >-_ (bn - an)lB, thus: (bn-an)  Ekr=lPnlB < Ekr=lPk(f  -- P f )  = 

p f _  pk+lf  _< p f .  Or ~, k~l pkl8 < m which contradicts Theorem 2.5. Hence 
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N, is a nowhere dense set. Let {(a,, b,)} be the sequence of  all couples of rational 

numbers such that b, > a , .  The set N = ~.J~= 1 N~ is of  first category and for 

each x ~ N we have Pf(x )  = f ( x ) ,  which proves the theorem. 

COROLLARY. Let f > 0 be a continuous function then P f  < f =~ P f  = f .  In 

particular P1 = 1. 

Proof. Theorem 2.6 implies that P f  = f on a dense set. But f and P f  are 

continuous functions, hence Pf  = f everywhere. 

The following example shows that Theorems 2.3 and 2.4 are not true unless 

we assume the existence of an exceptional set of first category. This example is 

an improvement of an example given by Prof. S. R. Foguel. 

EXAMPLE. Put X = [0,1) ,  let q5 be the map of X into itself defined by 

~b(x) = {3x} (3x minus the integral part of 3x). One can describe X to be the 
unit circle and the transformation sends z to z 3 (I z I -- 1), and then ~b is a con- 

tinuous map. 

Let us define Pf(x )  = f(dp(x)). There exists a measure invariant under P that 

does not vanish on any open set (the Lebesgue measure) and thus 

~,-- 1 P"la oo a.e. for every open set A. Theorem 2.3 implies that the process 

ai is conservative. If  we put x = a l a 2 a  3 ... ( x =  ~ ~- ,  a i = 0, 1,2) then ~b(x) = aEa3.... 

Let B be the Cantor set: those x's such that a i # l ,  i=1 ,2 ,3 , . . .  ~b-"(B)~ B for 

each n,  and A = (..J~=l~b-"(B) - B contains every fraction x = aaaEa3 ... where 

the digit 1 appears only finitely many times. The set A is of first category but  

it has the same cardinality as the continuum and it is dense in X .  B c is an open 

set but { 0 <  ~ = o P " l n c <  c¢} = A ,  and PIBo < 1Bo but P1BO~ 1Bo and 

lim,_.oo P"IBo = l~a~o.  

THEOREM 2.5. Let f >= 0 be a l.s.c, subvariant function. Let B = { f >  a} then 

there exist an open set B such that B D B,  P1B < 1 a and B -  B is a set of first 

Category. 

Proof. Let us take a sequence (a,} such that a,'.~a, and consider the sets 

B. = {f  > a.},  we have B. ~ B. Define the functions g. = 1/a.min.(J ' ,a.) ,  we 

have g. > 19. and Pg. < g. ,  hence by Lemma 2.1 lB. <_- g. .  But x (~ B --* g.(x) < 1 

for all n. Thus, by Theorem 2.2, there exists a set N.  = B c of first category so 

that x ( sB  U N .  ~ iB.(x) = 0. We have B.+ 1 ~ B. and Lemma 2.1 implies iB.., 

> in.. Similarly, iB. < in, hence lim._.o~in. < lB. On the other hand, for each 
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x ~ B ,  lB.(x)= 1 for sufficiently large n, iB.(x)= 1, hence lim,_,ooiB.(x) = 

g(x) > 1B(X) and it is clear that Pg < g. Thus by Lemma 2.1 we have g >= iB, 

hence l i m , . ~ i B .  = iB. Denote N = U ~ N , .  N is a set of  first category and 

x ~ B U N ~  lB.(X) = 0 for all n ~ iB(X) = 0. Let /~ be the set ~ =  ( i n > 0 } ,  

/~ ~ B and B -  B ~ N .  Define the functions h, = n .min(in ,  l /n) .  We have 

Ph, < h,, and lim,_.ooh, = lff. Hence PI~ < lff. which completes the proof  of  

Theorem 2.7. 

3. Ratio limit theorems. In this section we shall assume 

ASSUMPTION 3.1. For all x and for every open set A we have 

(3.1) PiA(X) = t 

LEMMA 3.1. Let A be any open set. Then 

oo 

3.2) Z P"IA(x) = 
n = l  

for all x .  

Proof. 

Thus 

lim ~2 P"+kla(x ) >= lim ~ pk(IA.P)"la(x ) = lira pkiA(X ) = 1. 
k--*oO n = O  k ~ o o  n = O  k ~  

oo 

E P"la(x)  = oo. 
n = 0  

Let 0 < fl < 1 be a function with a compact  support E and the interior of  the 

set {fl = 1} is non-empty. Let c~ = 1 -  fl; define: 

P~ = I e ~. P(I~P)"I~. 
n = O  

In particular, if  f l -  1 a 

(3.4) 
oo 

PA = Ia ~ P(IAcP)nIA • 
n = 0  

From Lemma 3 of [4] we can conclude that Pp is a contraction on g ( E ,  Er).  

The operator adjoint to P acts on the measures. It will also be denoted by P 

but will be written to the right of  its variable. Thus 

(3.5) pP(A) = (p ,P1A)  = f P ladp .  
J 
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Equation (3.4) will occasionally be for a-finite positive measures. A measure is 

Said to be invariant i f  

(3.6) ItP = It. 

In [4] it is proved that condition (3.1) implies that there exists a a-finite invariant 

measure which is finite on compact sets and positive on open sets. 

(a) Let It be a finite positive measure on E invariant under Pa LEMMA 3.2. 
then 

O3 

(3.7) 2 = E #(PI~)" 
n = 0  

is a a-finite measure invariant under P, and 2Ip = It 

(b) Let 2 be a measure invariant under P and 2(E) < oo then 2I~ is invariant 

under Pa. 

ProoL (a) See [4]. Further, 

2I~ = 2PI~ = p(PI~)'PIg = pie y, (PI~)~PIp = ItPp = p. 
n = O  n=O 

(b) Assume 2P = 2, hence 

N n N 

E (PI~)nPb = 2 E (PI,)nPb - 2I~ E (PI~)nP~ = 
n ~ O  n = O  n = O  

N N 

= 2 Z (PI~)'P~ - 2PI~ Z (PI,)'PIp = 2PIp - 2 (PI~) N+'P~. 
~ = 0  n = O  

But from Lemma 3 of [4] we can conclude that 

Thus 

2(PI~)~r+ lPIp~_,oo ~ O. 

oo 

,~IoPp = 2I~ ~, (PI~I'PIp = 2Pip = 2Ip. 
re=0 

LEMMA 3.3. Let f >= 0 be a function subinvariant under P; then IEf  is a 

subinvariant under PIJ and Pf lEf  < IEPf.  

Proof. Let  f > 0 be a subinvariant under P .  Hence 

N N N 

IE E P(I~P)nI~ f = IE Y~ P(I~P)nf- IE E P(I~P)nl j  
n = 0  n=O n=O 

N N 

<-- Ir Z P ( I ,P ) ' f - IE  Y~ P(I,P)'I~Pf=IEP(I,p)N+'f <IBPf<I  J .  
n = O  n = O  
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Let N tend to ~ ,  hence PI~f  <~ IEP f <= IEf. 

Let 2 be a a-finite invariant measure. (X, I;, 2, P) may be considered as a Markov 

process on the measure space (X,1;,4). (For the definition of such a process 

see [3]). 

LEMMA 3.4. The process (X,1; ,4,P)  is conservative. 

Proof. If the dissipative part of the process is non-empty then there exists 

a subinvariant function f > 0 such that P f  ¢- f .  Let us take an open set A such 

that 2(A) < oo, and hence PA1A = 1A, and IAP f ~ IAf. Consider the process 

(A, ~, ,  mI•, PA); by [3] Chapter II it is a well defined Markov process. By Lamina 

3.2 we have PAIAf < IAPf <--_ IAf => PAIAf ~ IAf. Hence the dissipative part 

of  the process (A,EA,4IA, PA) is non-empty, by Theorem A of [3] Chapter III. 

On the other hand, 4In is a finite measure invariant under PA, thus PA is a con- 

servative operator, a contradiction. Thus the process (X,E,2,P) is conservative. 

ASSUMPTION 3.2. There exists a unique invariant a-finite measure 2, such 

that is finite on compact sets. 

DEFINITION 3.1. A function f is said to be almost continuous i f  there exists 

an increasing sequence of continuous functions {f,} and a decreasing sequence 

of continuous functions {f,} such~that lim,-~,fn = f < f  and limn-.~fn = f > f ,  

and 2 ({ f  > f} )  = 0 

THEOREU 3.1. Let f , g  be two positive and almost continuous functions with 

compact supports. Let p be any finite measure. Then: 

~N 

2 <~, pnf> _ (4, f>  
(3.8) lira n=l 

~-.~o N ( 4 ,  g>" 
~, (#,Png) 

n = l  

We shah first prove the following lemma: 

LI~MMA 3.5. Let 0 ~ fl ~ 1 be a function with a compact support E and 

the interior of the set {fl = 1} is non-empty, then for each N and each x ~ X ,  

and every bounded function, 0 ~= f we have 

N N 

(3.9) Z f%Ppf(x) <_ Z P~I#f(x)+ ]] f I]" 
11=1 n = l  

ProoL For each K we have 
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N K N K 

~. P"Isj ~. P(I~p)kI~f(x) = Z P" ~. P(I~p)klpf(x) -- 
n = l  k = O  n = l  k = O  

N K / N K 

- Z P"I~ E P(S~p)kspf(x) = ( Z P" + i ~, (i~<p)kI~f(x) - 
n = l  k = 0  \ n = l  k = 0  

-- ~, P" Z (I:p)kI~f(x) = ]~ (I~P) f ( x )  - 
n = l  k = 0  n k = O  

/q K \ K K 

_ ~ , p .  Z( i~p)k+l la f (x ) )  ---p~+l Z( i=P)k lp f (x )_PZ( i~P)kSpf (x )+ 
n = l  k = O  k=O k = O  

N N N K 

+ ~, P"I~f(x) - E P"(I~<P) r+ lIaf(x) < E P"Iaf(x) + ply+ 1 E (I~,p)klj(x) N 
n = l  n = l  n = l  k = 0  

N K 

<= ~P"Ia f (x )  + [If)l" pN+l ~,(i~P)ki~l(x) = 
n = l  k=O  

N K K 

= ~, P~I~f(x) + 11 f II pN+l y, (i~p)kl(x)_ psi+, ]E (I~p)kI~Pl(x)) = 
n = l  k = O  k = O  

N 

= Z pnlgf(x) + ]l f ]1" (pN+,l(x) -- pN+,(i~p)r+ 1 ] ( X )  ) 
n = l  

N 

z llsll. 
n = l  

Hence 

N K N 

P" I n ~, P(I,,p)kI~f(x) < ~., P"I~f(x) + [1 f [[. 
n = l  k = 0  n = l  

Let K tend to ~ ,  we get 

N N 

]~ P'I ,  P J ( x )  ~ ~. P'IBf(x ) + II f I!" 
n = l  n = l  

Proof of theorem 3.1. Let A be a compact set that contains the supports of  

the function f and g. Let 0 < fl < 1 be a continuous function with a compact 

support E and A c {fl = 1}. There exists a sequence of integers {Ni } such that 

the sequence 

N j  

Z <lx,P'f> 
n = l  

N j  

E @,P"B) 
n = l  

converges. In order to prove the theorem it is sufficient to show that 
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NI 
Z (#,pnf)  

lim " =  1 

j~ov N3 

E < #,P"fl> 
n = l  

< L J >  
<.~,/~>' 

and to show also by a similar way that 
N 

Z (#,P"g> 
lim . = 1 

N~co N 

Z <#, P"fl) 
t l = l  

<2,g> 
< L / 3 >  

Let us define a functional on B(E, EE): 

(3.10) 
Z <#,P"/ph> 

v(h) = Lira .=1 
j Nj 

~1 <#' P"fl) 

(a Banach limit), h e B(E,Z~). 

By Lemma 3.1 we have ]~,°°- a (p,P"fl> = c~, hence Lemma 3.5 implies v(Pph) 
< v(h). But v(le) = 1. Let 0 ___ h < 1 e then 

v ( e p ( ~  - h)  = v ( l~  - Pph) = 1 - v (e~h)  >= 1 - v(h)  = v ( 1 E - - h ) .  

Thus v(Pph) = v(h), and v is invariant under Pp. v is also defined as a functional 

on C(E), but by Assumption 3.2 and Lemma 3.2 we have that there exists a 

unique functional on C(E) which is invariant under Pa. This functional is the 

functional which is induced by the measure 2Ip. Hence 

h~C(E) ~ v(h) = <kip, h> <2,Iph> 
<2I~, 1E> = <2, fl> " f  

is an almost continuous function. Let {f,} and {f,} be the sequences of Defini- 
tion 3.1. We have: 

< I 2 p , f )  _ <2Ip , f  ) _ l i m  ( 2 I p , f . )  = l i m  v ( f . )  < v ( f )  < v ( f )  
<~,/~> <~,/~> . - . ~  <.~,~> . ~  = = 

< 2 I a ' f )  - ( 2 l ' a f )  - l i m  <2/~, f .>  _ l i m  v ( f . )  > v ( f ) .  
<;~,/~> <,~,/~> .+  ~ <2, fl> .+  ® = 

_ < 2 I ~ , f >  _ < 2 , f >  
Thus v(f) <~,/~> <X,/~> 
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N 

X </2,P"f> 
lira .=1 
j ~ o o  N 

Z (/2,e ' f l )  
n = l .  

(~ , f>  
< ,~, B> " 

COROLLARY 1. Let f ,  g, be as in Theorem 3.1. Let/2 be the Dirac measure 5:, 
then we have 

N 

X P~f(x) <2,f> 
(3.11) " ~ '  - 

n < 2 , f >  " 

X V'g(x) 
n = l  

COROLLARY 2. Let A,B be condtionally compact sets, such that | 2 (A)>  0 

2(B) > 0 and 2(aA) = )~@B) = 0 (the boundaries); then 1 n and 1B are almost 

continuous functions. Let/2 be any finite measure. Then 

(3.12) 

N 

Z /2P'(B) 
l i m  _" = 1 

N~o0  N 

Z #P'(A) 
n = l  

,~(B) 
,~(A) 

COROLLARY 3. Let A,B be as in Corollary 2. Let # be the Dirac measure 3x 

then 

N 

~, P'(x,B) 2(B) 
(3.13) lira "= 1 - 

. - , ~  N ~ ( A ) '  

~, W ( x , a )  
n = l  

DEFINITION 3.2. The process is said to be a Harris process if  

(3.14) 2(A) > 0 =~ ia(x) = 1 for all x ~ X .  

The following lemma is well known, we shall give its proof  for completeness. 

LEMMA 3.6. I f  the process is a Harris process then Assumption 3.2 is valid. 

P r o o f i  Let/2 be any invariant measure. It can be decomposed into # =/21 +/22 

where/21 --~ 2 and /22 3_ 2. Let:  

0 = 2(A) = 2P(A) = Q.,P1A> ~ 2({P1 a > 0}) = 0 

/21({Plx > 0}) = 0 ~ (/21,P1~> =/21P(A) = 0 :../21P--.~,~.. 
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Consider the process ( X , Z , 2 , P ) ,  (3.14) implies that the process is ergodic and 

by Chapter VI of  [3] Theorem A, there can exist at most one a-finite invariant 

measure for the process (X, Z, 2, P). Hence #x = a" 2. We shall prove that #2 = 0. 

There exists a set A such that 2(A) > 0 but #z(A) = 0. Denote A, = {P"I a > 0}. 

We have for each n: 0 = #2(A) = #2Pn(A) = (# ,  Pnla)  ~ #2(U~= 1 An) = 0. But 
oo A by Lemma 2.2 and (3.14) we have U , = I  , = x .  Thus #2 = o.j 

The following example will show that Harr is '  condition (3.14) is not necessary 

for assumption 3.2 to hold. 

Example. Let X = R 1 the real line, 2 the Lebesgue measure, # a probabili ty 

measure which support is not contained in a discrete subgroup of  R 1 , but the 

support  of  # is a countable set and hence 2.1_ # .  Let us also assume .fx#(dx) = O. 

Define P f ( x )  = . I f ( x - y ) # ( d y ) .  By [2] Chapter VI, 10, if A is an open set then 

every x E R 1 enters A some time with probabil i ty 1, i.e. Pia(x) = 1. Hence as- 

sumption 3.1 is satisfied. But this process is not a Harris process. Consider the 
#pn 

measure /2 = ~-~-i-' let F be its support. It  is obvious that F is a countable 
n = 0  

set. Hence 2(F) = 0. Let Fx = F + x then 2(Fx) = 0. But pn(x,Fx) = 1 for al.  

n or ie~(~) = 0, i.e., (3.14) is not satisfied. 

On the other hand Assumption 3.2 holds. It  is clear that 2P = 2; we shall prove 

that if  v is a a-finite invariant measure which is finite on compact  sets that v = a" 2. 

Let A be an open bounded interval: 

v(A) = vP(A) = (v, e l a )  = ( I l a ( x -  y)#(dy)v(dx) = 
, I  ! 

= ffl,(x-y)v(ax)#(dy)= Sv(A+y)u(ay). 
Define: f ( x )  = v ( A -  x) ,  it is easy to see that f ( x )  is a continuous function, 

and we have P f  = f .  Define fu = min ( f ,N) ;  in order to prove that f is constant 

it is sufficient to prove that fN is constant for each N .  But Pfu < fu and by the 

Corollary to Theorem 2.6 we have Pfu = fu .  I f  fu  is not a constant then there 

exists a < b such that B = {fu > b} and E = {fu < a} are non-empty open sets, 

and B n E = ~ .  But by Theorem 2.5 there exists an open set B such that B = / 7  

and /7  - B is a set of  first category, and hence/7 t3 E = ~ ,  such that P1]  < 1 ] .  

Thus, x e E  ~ Pn(x,/7) = 0 for all n,  which contradicts Assumption 3.1. Hence 

f is a constant, i.e. v(A - x) = v(A) for every open interval A.  Thus v is the Haar  

measurement on R t ,  i.e. v = a ' 2 .  
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